3D to 4D shift
In physics and mathematics, the dimension of a space is roughly defined as the minimum number of coordinates needed to specify every point within it. For example: a point on the unit circle in the plane can be specified by two Cartesian coordinates but one can make do with a single coordinate (the polar coordinate angle), so the circle is 1-dimensional even though it exists in the 2-dimensional plane. This intrinsic notion of dimension is one of the chief ways in which the mathematical notion of dimension differs from its common usages. There is also an inductive description of dimension: consider a discrete set of points (such as a finite collection of points) to be 0-dimensional. By dragging a 0-dimensional object in some direction, one obtains a 1-dimensional object. By dragging a 1-dimensional object in a new direction, one obtains a 2-dimensional object. In general one obtains an n+1-dimensional object by dragging an n dimensional object in a new direction. Returning to the circle example: a circle can be thought of as being drawn as the end-point on the minute hand of a clock, thus it is 1-dimensional. To construct the plane one needs two steps: drag a point to construct the real numbers, then drag the real numbers to produce the plane. Consider the above inductive construction from a practical point of view — ie: with concrete objects that one can play with in one’s hands. Start with a point, drag it to get a line. Drag a line to get a square. Drag a square to get …